C24—N—C28	114.1 (3)	0-C20-C21	125.6 (3)
I-C14-C13	120.5 (2)	C4C5C6	120.4 (4)
C25—N—C28	103.7 (4)	C19-C20-C21	119.4 (3)
I-C14-C15	118.9 (2)	C5-C6-C7	120.3 (5)
C2-C1-C11	122.1 (3)	C20-C21-C22	119.7 (3)
C13-C14-C15	120.5 (3)	C6C7C8	118.9 (4)
C2-C1-C17	124.1 (3)	C17-C22-C21	122.5 (3)
C14-C15-C16	119.7 (3)	C3-C8-C7	122.2 (4)
C11-C1-C17	113.8 (2)	O-C23-C24	108.4 (3)
C11-C16-C15	121.4 (3)	C2-C9-C10	115.7 (4)
C1-C2-C3	121.9 (3)	N-C24-C23	112.3 (2)
C1-C17-C18	120.5 (3)	C1-C11-C12	121.4 (3)
C1-C2-C9	123.1 (4)	N-C25-C26	104.0 (4)
C1C17C22	122.8 (3)	C1-C11-C16	121.1 (3)
C3—C2—C9	114.9 (2)	C25-C26-C27	105.3 (4)
C18-C17-C22	116.6 (3)	C12C11C16	117.3 (3)
C2-C3-C4	122.5 (4)	C26—C27—C28	104.7 (5)
C17-C18C19	121.9 (3)	NC28C27	103.4 (3)
C2-C3-C8	120.2 (3)		

The structure was solved using Patterson techniques. H atoms were placed at 0.96 Å from their associated C atom. They were refined in riding mode with a fixed thermal parameter of 1.2 times that of their associated C atom.

Data collection: CAD-4 (Enraf–Nonius, 1977). Cell refinement: SETANG (Enraf–Nonius, 1977). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: Ball & Stick (Müller & Falk, 1987–1991).

We thank Dr Gerry Potter of our Institute (Drug Development) for providing us with the title complex, and Dr Christine Cardin and Debbie Wilcock (University of Reading, England) for the generous use of their datacollection facilities. We also thank the Cancer Research Campaign for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: LI1116). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Blackburn, G. M., Goodman, J. & Smith A. J. (1988). Acta Cryst. C44, 1629–1632.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Goldberg, I. & Becker, Y. (1987). J. Pharm. Sci. 76, 259–264. Hunter, D. H., Payne, N. C., Rahman, A., Richardson, J. F. & Ponce,
- Y. Z. (1983). Can. J. Chem. 61, 421-426. Kuroda, R., Cutbush, S., Neidle, S. & Leung, O.-T. (1985). J. Med.
- Chem. 28, 1497–1503.
- Müller, N. & Falk, A. (1987–1991). Ball & Stick. Version 3.05. Linz: Cherwell Scientific Publishing.
- Precigoux, G., Courseille, C., Geoffre, S. & Hospital, M. (1979). Acta Cryst. B35, 3070–3072.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1994). C50, 2045–2047

A Deoxyuridine Derivative

MICHAEL BOLTE

Institut für Organische Chemie der Universität Frankfurt, Marie-Curie-Strasse 11, D-60439 Frankfurt am Main, Germany

(Received 21 January 1994; accepted 19 May 1994)

Abstract

The structure of N-(4-{1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)-2-tetrahydrofuranyl]-2-oxo-1,2-dihydro-4-pyrimidinyloxy}-3,5-dimethylphenyl)acetamide chloroform solvate, C₁₉H₂₃N₃O₆.CHCl₃, has been determined and its geometrical features are described. This molecule plays an important role in the convertible nucleoside approach, a method of synthesizing oligodeoxynucleotides bearing tethered functionality.

Comment

Synthetic oligodeoxynucleotides are able to bind nucleic acid targets with high affinity and specificity. Unfortunately, they lack an ability to report binding or to effect chemical modification of the target sequence (MacMillan & Verdine, 1990). A method to attach non-natural ligands to synthetic DNA uses functionally tethered oligodeoxynucleotides (FTOs). When the tethered nucleophile is introduced at the monomer level of DNA synthesis the method is called 'nonconvergent'. Since this method bears some disadvantages, MacMillan & Verdine (1991) developed the 'convergent' strategy, where the tether is installed at the final step of DNA synthesis. This method leads to a variety of FTOs differing in sequence and tether structure starting from a single nucleoside precursor. The title compound, (I), is an arvl ether of uridine which can serve as a latent cytidine residue because it undergoes clean substitution when it is treated with ammonia (Zhou & Chattopadhyaya, 1986).

Acta Crystallographica Section C ISSN 0108-2701 ©1994

The crystal structure analysis was carried out in order to determine the orientation of the phenyl ring relative to the base moiety, which turned out to be 74.7°. The deoxyribose ring adopts the $C_{(1)}$ -exo- $C_{(2)}$ endo conformation. Relative to the sugar moiety the base appears in the *anti* conformation, with the [O(4')-C(1')-N(1)-C(2)]dihedral angle X $-148.4 (3)^{\circ}$. The exocyclic bond C(4')—C(5')exhibits the +sc conformation. The intermolecular packing is stabilized by two hydrogen bonds: 2.722 (4) Å, $O(5') - H(5'O) - O(2^{i})$ $O(5') \cdots O(2^i)$ 174.0 (2)° and N(4'')...O(5''ii) 2.957 (4) Å, N(4'')... $H(4'')\cdots O(5''^{ii})$ 178.2 (1)°. For the hydroxyl group O(3')—H(3'O) no hydrogen bonds were found, only two contacts to a chloroform molecule: O(3')... $Cl(1^{iii})$ 3.553 (4) Å, O(3')-H(3'O)···Cl(1ⁱⁱⁱ) 158.2 (1)° and O(3')... $Cl(2^{iii})$ 3.946 (5) Å, O(3')-H(3'O)... $Cl(2^{iii})$ 144.1 (1)°, but the angles at the Cl atoms [C(1L)- $Cl(1) \cdots H(3'O^{iv}) = 80.5(2), C(1L) - Cl(2) \cdots H(3'O^{iv})$ 66.8 (2)°] do not confirm the existence of hydrogen bonds [symmetry codes: (i) x - 1, y, z; (ii) 3 - x, y $-\frac{1}{2}$, 1 - z; (iii) x - 1, y, z - 1; (iv) 1 + x, y, 1 + z]. The packing diagram shows that the phenyl residues of neighbouring molecules form nearly planar layers (the angle between the phenyl rings is 10.6°), which are stacked in such a way that short contacts from the centre of the aromatic ring to a methyl group are found [C(6'')-centre(phenyl) 3.619 Å, C(5'')-C(6")...centre(phenyl) 93.4°].

Fig. 1. Perspective view of the title compound with the atomnumbering scheme.

Fig. 2. Packing diagram showing the hydrogen bonds as dashed lines.

Experimental

```
Crystal data
C19H23N3O6.CHCl3
M_r = 508.8
Monoclinic
P2_1
a = 6.592 (1) \text{ Å}
b = 9.831 (1) \text{ Å}
c = 18.053 (1) Å
\beta = 97.00 (1)^{\circ}
V = 1161.1 (1) Å<sup>3</sup>
Z = 2
D_x = 1.455 \text{ Mg m}^{-3}
```

Data collection

Enraf–Nonius CAD-4	$R_{\rm int} = 0.053$
diffractometer	$\theta_{\rm max} = 60^{\circ}$
ω scans	$h = -7 \rightarrow 7$
Absorption correction:	$k = -11 \rightarrow 11$
none	$l = -17 \rightarrow 17$
6651 measured reflections	3 standard reflections
3351 independent reflections	frequency: 92 min
3307 observed reflections	intensity variation:
$[F > 3\sigma(F)]$	insignificant

Refinement

 $w = 1/[\sigma^2(F) + 0.0008F^2]$ Refinement on F $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 1.28 \text{ e } \text{\AA}^{-3}$ R = 0.069wR = 0.081 $\Delta \rho_{\rm min} = -0.67 \ {\rm e} \ {\rm \AA}^{-3}$ S = 2.29Atomic scattering factors 3307 reflections from International Tables 289 parameters H-atom parameters not for X-ray Crystallography (1974, Vol. IV) refined

Cu $K\alpha$ radiation

Cell parameters from 25

 $\lambda = 1.5418 \text{ Å}$

reflections

 $\mu = 4.00 \text{ mm}^{-1}$

Transparent block

 $0.3 \times 0.3 \times 0.1$ mm

Crystal source: chloro-

form/methanol

 $\theta = 28 - 48^{\circ}$

T = 293 K

Colourless

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	Z	U_{eq}
N(1)	0.4822 (4)	0.5400 (3)	0.1194 (2)	0.037(1)
C(2)	0.6830 (5)	0.5091 (4)	0.1489 (2)	0.036(1)
O(2)	0.8226 (4)	0.5324 (3)	0.1110(1)	0.047(1)
N(3)	0.7171 (4)	0.4588 (3)	0.2188 (2)	0.041(1)
C(4)	0.5615 (5)	0.4301 (4)	0.2546 (2)	0.040(1)
C(5)	0.3547 (6)	0.4479 (4)	0.2253 (2)	0.045(1)
C(6)	0.3214 (5)	0.5042 (4)	0.1573 (2)	0.041 (1)
C(1')	0.4507 (6)	0.6092 (4)	0.0476 (2)	0.039(1)
0(4')	0.2759 (4)	0.6943 (3)	0.0460(1)	0.048(1)
C(2')	0.4040 (6)	0.5183 (4)	-0.0199 (2)	0.044 (1)
C(3')	0.3052 (6)	0.6190 (5)	-0.0769 (2)	0.046(1)
0(3')	0.4562 (5)	0.6970 (5)	-0.1087 (2)	0.078 (1)
C(4')	0.1958 (5)	0.7160 (4)	-0.0296 (2)	0.042(1)
C(5')	-0.0333 (6)	0.6984 (5)	-0.0377 (3)	0.059 (1)
0(5')	-0.0921(5)	0.5609 (4)	-0.0319 (2)	0.070(1)
0(4)	0.5950 (4)	0.3833 (3)	0.3243 (1)	0.048 (1)
C(41)	0.7996 (6)	0.3741 (4)	0.3589 (2)	0.042(1)
C(42)	0.8829 (6)	0.2444 (4)	0.3689 (2)	0.044 (1)
C(47)	0.7657 (9)	0.1207 (5)	0.3388 (3)	0.066 (2)
C(43)	1.0773 (6)	0.2349 (4)	0.4082 (2)	0.045 (1)
C(44)	1.1836 (5)	0.3482 (4)	0.4360 (2)	0.039 (1)
C(45)	1.0940 (6)	0.4768 (4)	0.4249 (2)	0.042(1)
C(46)	0.8995 (6)	0.4901 (4)	0.3860 (2)	0.041 (1)

C(48)	0.8030 (8)	0.6294 (5)	0.3745 (3)	0.057 (1)
N(4")	1.3766 (5)	0.3270 (3)	0.4772 (2)	0.040(1)
C(5")	1.5123 (7)	0.4161 (4)	0.5101 (2)	0.043 (1)
O(5")	1.4869 (5)	0.5409 (3)	0.5057 (2)	0.058 (1)
C(6")	1.6977 (7)	0.3570 (5)	0.5541 (2)	0.055 (1)
	1.7879 (2)	0.5720†	0.7659(1)	0.084 (1)
C1(2)	1.5131 (2)	0.3519 (2)	0.7841 (1)	0.098 (1)
CI(3)	1.9438 (3)	0.3019 (2)	0.7859 (2)	0.130(1)
C(1L)	1.7593 (8)	0.4150 (5)	0.8084 (3)	0.065 (2)

† Coordinate fixed to define origin.

Table 2. Selected geometric parameters (Å, °)

	-	-	
N(1)—C(2)	1.399 (4)	N(1)—C(6)	1.375 (5)
N(1) - C(1')	1.457 (4)	C(2)—O(2)	1.233 (4)
C(2)N(3)	1.348 (4)	N(3)—C(4)	1.308 (5)
C(4)—C(5)	1.411 (5)	C(4)—O(4)	1.333 (4)
C(5)—C(6)	1.341 (5)	C(1') - O(4')	1.421 (5)
C(1') - C(2')	1.512 (5)	O(4') - C(4')	1.419 (4)
C(2') - C(3')	1.517 (5)	C(3') - O(3')	1.430 (6)
C(3') - C(4')	1.520 (6)	C(4') - C(5')	1.509 (5)
C(5') - O(5')	1.413 (6)	O(4)—C(41)	1.418 (4)
C(41) - C(42)	1.391 (6)	C(41)-C(46)	1.378 (5)
C(42) - C(47)	1.506 (6)	C(42)—C(43)	1.390 (5)
C(43)—C(44)	1.377 (5)	C(44)—C(45)	1.400 (5)
C(44) - N(4'')	1.409 (4)	C(45)—C(46)	1.390 (5)
C(46)—C(48)	1.513 (6)	N(4")—C(5")	1.339 (5)
C(5'') = O(5'')	1.239 (4)	C(5'') - C(6'')	1.492 (6)
CI(1) - C(1L)	1.743 (5)	Cl(2)— $C(1L)$	1.743 (5)
Cl(3) - C(1L)	1.732 (6)		
C(2)N(1)C(6)	120.5 (3)	C(2)-N(1)-C(1')	117.7 (3)
C(6) - N(1) - C(1')	121.8 (3)	N(1)—C(2)—O(2)	119.0 (3)
N(1)-C(2)-N(3)	118.5 (3)	O(2) - C(2) - N(3)	122.4 (3)
C(2)N(3)C(4)	119.4 (3)	N(3)—C(4)—C(5)	124.6 (3)
N(3)-C(4)-O(4)	119.4 (3)	C(5)—C(4)—O(4)	115.9 (3)
C(4)—C(5)—C(6)	115.9 (3)	N(1) - C(6) - C(5)	120.7 (3)
N(1) - C(1') - O(4')	108.6 (3)	N(1) - C(1') - C(2')	115.7 (3)
O(4') - C(1') - C(2')	104.3 (3)	C(1') - O(4') - C(4')	108.3 (3)
C(1') - C(2') - C(3')	100.9 (3)	C(2') - C(3') - O(3')	111.1 (3)
C(2') - C(3') - C(4')	102.8 (3)	O(3') - C(3') - C(4')	106.9 (4)
O(4') - C(4') - C(3')	107.4 (3)	O(4') - C(4') - C(5')	109.0 (3)
C(3') - C(4') - C(5')	114.3 (3)	C(4') - C(5') - O(5')	112.5 (4)
C(4)-O(4)-C(41)	118.5 (3)	O(4) - C(41) - C(42)	117.1 (3)
O(4)—C(41)—C(46)	119.5 (3)	C(42)—C(41)—C(46)	123.3 (3)
C(41)—C(42)—C(47)	121.1 (4)	C(41) - C(42) - C(43)	116.9 (3)
C(47)-C(42)-C(43)	122.0 (4)	C(42)—C(43)—C(44)	121.9 (3)
C(43)—C(44)—C(45)	119.4 (3)	C(43)— $C(44)$ — $N(4'')$	117.3 (3)
C(45)—C(44)—N(4")	123.2 (3)	C(44)—C(45)—C(46)	120.3 (3)
C(41)-C(46)-C(45)	118.2 (3)	C(41)-C(46)-C(48)	121.7 (3
C(45)—C(46)—C(48)	120.1 (3)	C(44) - N(4'') - C(5'')	130.5 (3)
N(4'') - C(5'') - O(5'')	122.8 (4)	N(4'') - C(5'') - C(6'')	116.1 (3
O(5'') - C(5'') - C(6'')	121.1 (4)	Cl(1)— $C(1L)$ — $Cl(2)$	110.6 (3
Cl(1) - C(1L) - Cl(3)	110.4 (3)	Cl(2) - C(1L) - Cl(3)	111.8 (3)

Intensities were corrected for Lorentz and polarization effects. The structure was solved by direct methods using *SHELXS86* (Sheldrick, 1985). Refinement was carried out by full-matrix least-squares methods with *XLS* (Sheldrick, 1987). All H atoms were located by a difference synthesis and positioned with fixed individual displacement parameters $[U(H) = 1.5 \times U_{eq}(C_{methyl}) \text{ or } U(H) = 1.2 \times U_{eq}(C, N, O)]$ using a riding model with C—H = 0.96, N—H 0.90 and O—H 0.85 Å. An empirical isotropic extinction correction was applied for which $F^* = F[1 + 0.002\chi F^2/\sin(2\theta)]^{-0.25}$, where χ refined to a value of 0.012 (2). The absolute configuration was determined by η -refinement (Rogers, 1981) starting from both configurations [$\eta = 0.94$ (4) for the correct structure].

I thank Professor G. Verdine (Harvard University, Cambridge, USA) for providing the sample.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: SE1052). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

MacMillan, A. M. & Verdine, G. L. (1990). J. Org. Chem. 55, 5931-5933.

- MacMillan, A. M. & Verdine, G. L. (1991). Tetrahedron, 47, 2603-2616.
- Rogers, D. (1981). Acta Cryst. A37, 734-741.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1987). XLS. Expanded Version of SHELX76. Univ. of Göttingen, Germany.
- Zhou, X.-X. & Chattopadhyaya, J. (1986). Tetrahedron, 42, 5149-5156.

Acta Cryst. (1994). C50, 2047-2049

6-Oxa-3,9-dithiabicyclo[9.4.0]pentadeca-1(11),12,14-triene

RAIKKO KIVEKÄS

Department of Chemistry, PO Box 6, FIN-00014 University of Helsinki, Finland

Reijo Sillanpää

Department of Chemistry, University of Turku, FIN-20500 Turku, Finland

LLUIS ESCRICHE, M. PILAR ALMAJANO, FRANCESC TEIXIDOR AND JAUME CASABÓ

Departament de Quimica (Unitat Inorgànica), Universitat Autónoma de Barcelona and Institut de Ciència dels Materials (CSIC), Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain

(Received 9 February 1994; accepted 15 July 1994)

Abstract

The title molecule, $C_{12}H_{16}OS_2$, is partially disordered with the O and H atoms of the $-CH_2$ -O- CH_2 -group occupying two positions. The molecule assumes C_2 symmetry and the twofold axis is located midway through the triene group and across the two partially occupied O-atom positions.